Block-Decoupling Multivariate Polynomials Using the Tensor Block-Term Decomposition
نویسندگان
چکیده
We present a tensor-based method to decompose a given set of multivariate functions into linear combinations of a set of multivariate functions of linear forms of the input variables. The method proceeds by forming a three-way array (tensor) by stacking Jacobian matrix evaluations of the function behind each other. It is shown that a blockterm decomposition of this tensor provides the necessary information to block-decouple the given function into a set of functions with small input-output dimensionality. The method is validated on a numerical example.
منابع مشابه
Weighted tensor decomposition for approximate decoupling of multivariate polynomials
Multivariate polynomials arise in many different disciplines. Representing such a polynomial as a vector of univariate polynomials can offer useful insight, as well as more intuitive understanding. For this, techniques based on tensor methods are known, but these have only been studied in the exact case. In this paper, we generalize an existing method to the noisy case, by introducing a weight ...
متن کاملDecoupling Multivariate Polynomials Using First-Order Information and Tensor Decompositions
We present a method to decompose a set of multivariate real polynomials into linear combinations of univariate polynomials in linear forms of the input variables. The method proceeds by collecting the first-order information of the polynomials in a set of sampling points, which is captured by the Jacobian matrix evaluated at the sampling points. The canonical polyadic decomposition of the three...
متن کاملDecoupling Multivariate Polynomials Using First-Order Information
We present a method to decompose a set of multivariate real polynomials into linear combinations of univariate polynomials in linear forms of the input variables. The method proceeds by collecting the first-order information of the polynomials in a set of operating points, which is captured by the Jacobian matrix evaluated at the operating points. The polyadic canonical decomposition of the thr...
متن کاملSolving Differential Equations by Using a Combination of the First Kind Chebyshev Polynomials and Adomian Decomposition Method
In this paper, we are going to solve a class of ordinary differential equations that its source term are rational functions. We obtain the best approximation of source term by Chebyshev polynomials of the first kind, then we solve the ordinary differential equations by using the Adomian decomposition method
متن کاملNon-orthogonal tensor diagonalization
Tensor diagonalization means transforming a given tensor to an exactly or nearly diagonal form through multiplying the tensor by non-orthogonal invertible matrices along selected dimensions of the tensor. It has a link to an approximate joint diagonalization (AJD) of a set of matrices. In this paper, we derive (1) a new algorithm for a symmetric AJD, which is called two-sided symmetric diagonal...
متن کامل